Transcription-associated recombination is independent of XRCC2 and mechanistically separate from homology-directed DNA double-strand break repair
نویسندگان
چکیده
It has previously been shown that transcription greatly enhances recombination in mammalian cells. However, the proteins involved in catalysing this process and the recombination pathways involved in transcription-associated recombination (TAR) are still unknown. It is well established that both the BRCA2 protein and the RAD51 paralog protein XRCC2 are required for homologous recombination. Here, we show that the BRCA2 protein is also required for TAR, while the XRCC2 protein is not involved. Expression of the XRCC2 gene in XRCC2 mutated irs1 cells restores the defect in homologous recombination repair of an I-SceI-induced DNA double-strand break, while TAR is unaffected. Interestingly, the XRCC2-deficient irs1 cells are also proficient in recombination induced at slowed replication forks, suggesting that TAR is mechanistically linked with this recombination pathway. In conclusion, we show that TAR depends on BRCA2 but is independent of XRCC2, and that this recombination pathway is separate from that used to repair a two-ended DNA double-strand break.
منابع مشابه
The splicing-factor related protein SFPQ/PSF interacts with RAD51D and is necessary for homology-directed repair and sister chromatid cohesion
DNA double-stranded breaks (DSBs) are among the most severe forms of DNA damage and responsible for chromosomal translocations that may lead to gene fusions. The RAD51 family plays an integral role in preserving genome stability by homology directed repair of DSBs. From a proteomics screen, we recently identified SFPQ/PSF as an interacting partner with the RAD51 paralogs, RAD51D, RAD51C and XRC...
متن کاملHomologous recombination deficiency leads to profound genetic instability in cells derived from Xrcc2-knockout mice.
DNA damage such as double-strand breaks presents severe difficulties for the cell to repair, especially if genetic stability is to be preserved. Recombination of the damaged DNA molecule with an undamaged homologous sequence provides a potential mechanism for the high-fidelity repair of such damage, and genes encoding homologous recombination (HR) proteins have been identified in mammalian cell...
متن کاملA dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing
Mycobacteria have two genetically distinct pathways for the homology-directed repair of DNA double-strand breaks: homologous recombination (HR) and single-strand annealing (SSA). HR is abolished by deletion of RecA and reduced in the absence of the AdnAB helicase/nuclease. By contrast, SSA is RecA-independent and requires RecBCD. Here we examine the function of RecO in mycobacterial DNA recombi...
متن کاملEffects of double-strand break repair proteins on vertebrate telomere structure
Although telomeres are not recognized as double-strand breaks (DSBs), some DSB repair proteins are present at telomeres and are required for telomere maintenance. To learn more about the telomeric function of proteins from the homologous recombination (HR) and non-homologous end joining pathways (NHEJ), we have screened a panel of chicken DT40 knockout cell lines for changes in telomere structu...
متن کاملA potential role for the XRCC2 R188H polymorphic site in DNA-damage repair and breast cancer.
An acquired genetic instability, resulting from the loss of some types of DNA repair, is an early event in the development of a subset of human cancers. The involvement of BRCA1 and BRCA2 in the homologous recombination repair (HRR) of double-strand breaks in DNA implicates this pathway in the suppression of breast cancer. A family of proteins related to human RAD51, including XRCC2, are essent...
متن کامل